资源类型

期刊论文 663

会议视频 7

年份

2023 74

2022 64

2021 61

2020 54

2019 47

2018 43

2017 27

2016 28

2015 42

2014 39

2013 31

2012 21

2011 22

2010 19

2009 19

2008 20

2007 27

2006 1

2005 3

2004 2

展开 ︾

关键词

吸附 3

2022全球十大工程成就 2

二氧化碳 2

固体氧化物燃料电池 2

大型运载火箭 2

带传动 2

显微硬度 2

有色金属工业 2

重金属 2

重金属废水 2

20 kt级重载组合列车 1

2035 1

Tetrasphaera 1

CECE-GC 1

Deep metal mining 1

EDI 1

H2S 1

MOF基催化剂 1

Mitigation 1

展开 ︾

检索范围:

排序: 展示方式:

Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal

Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1130-7

摘要:

Addition of alkali to pH 10 is effective for precipitation of precipitable metals.

Fenton treatment is effective for substantial removal of Tl, Cd, Cu, Pb, and Zn.

Sulfide precipitation is a final step for removal of trace Tl, Cd, Cu, Pb, and Zn.

Bench and pilot studies demonstrated the effectiveness of this combined technique.

关键词: Thallium     Pilot     Fenton     Sulfide precipitation     Heavy metal     Industrial wastewater    

Removal of copper by modified chitosan adsorptive membrane

Xiaoshuai LIU, Zihong CHENG, Wei MA

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 102-106 doi: 10.1007/s11705-009-0123-7

摘要: In this study, a novel adsorptive membrane was prepared from chitosan as the functional polymer and some additive blend solutions by solution casting method. The modified chitosan membrane was characterized by FTIR and its Water Swelling Ratio (WSR). The adsorption of copper ions on the adsorptive membrane was investigated in batch experiments. The results obtained from the experiments indicated that the membrane had a good adsorption capacity for copper ions, the optimal ionic strength and pH were 0.1 and 5-6, respectively. Compared with the Langmuir isotherm model, the experimental data were found to be following the Freundlich model.

关键词: chitosan     adsorptive membrane     copper removal     environmental engineering     heavy metal     isotherm model    

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1502-7

摘要:

• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation.

关键词: Heavy metal adsorption     Magnetic hydrotalcite     ARBs removal     Cr(VI)-MMOs combined antibacterial activity    

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 249-275 doi: 10.1007/s11705-022-2245-0

摘要: Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.

关键词: electrospinning     heavy metal     adsorption     nanostructure     wastewater    

Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils

Fang-Jie ZHAO

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 333-338 doi: 10.15302/J-FASE-2020335

摘要:

Soil contamination with heavy metal(loid)s threatens soil ecological functions, water quality and food safety; the latter is the focus of this review. Cadmium (Cd) and arsenic (As) are the toxic elements of most concern for food safety because they are relatively easily taken up by food crops. Rice is a major contributor of both Cd and As intakes to the Chinese population. Contamination and soil acidification are the main causes of high Cd levels in rice grains produced in some areas of southern China. The risk of Cd and As accumulation in food crops can be mitigated through agronomic practices and crop breeding. Liming is effective and economical at reducing Cd uptake by rice in acid soils. Paddy water management can produce opposite effects on Cd and As accumulation. Many genes controlling Cd and As uptake and translocation have been characterized, paving the way to breeding low accumulating crop cultivars through marker-assisted molecular breeding or genetic engineering. It is important to protect agricultural soils from future contamination. Long-term monitoring of anthropogenic additions and accumulation of heavy metal(loid)s in agricultural soils should be undertaken. Mass-balance models should be constructed to evaluate future trends of metal(loid)s in agricultural soils at a regional scale.

关键词: arsenic     cadmium     food safety     heavy metals     soil contamination    

Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes

Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 262-272 doi: 10.1007/s11705-017-1682-7

摘要: A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA) ) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.

关键词: poly(vinyl chloride-r-acrylic acid)     negatively charged PVC membrane     anti-fouling     heavy metal adsorption     Cu(II) removal    

Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1523-x

摘要:

• In sediments, the transformation of sulfides may lead to the release of heavy metals.

关键词: Coastal wetland     Heavy metal     Sulfur     Biogeochemical cycle    

wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1073-4

摘要:

An-RBC reactor is highly suited to treat metallic wastewater.

Metal removal is due to sulfide precipitation via sulfate reduction by SRB.

Cu(II) removal was the best among the different heavy metals.

Maximum metal removal is achieved at low metal loading condition.

Metal removal matched well with the solubility product values of respective metal sulfide salts.

关键词: Factorial design analysis     sulfate reducing bacteria     multi-metal solution     heavy metal removal     anaerobic rotating biological contactor reactor     high metal loading.    

Temporal variation of heavy metal pollution in urban stormwater runoff

Wen LI, Zhenyao SHEN, Tian TIAN, Ruimin LIU, Jiali QIU

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 692-700 doi: 10.1007/s11783-012-0444-5

摘要: Stormwater runoff from three types of urban surfaces, a parking lot, a street, and a building roof, was monitored during four rainfall events that occurred in the one-year period from June 2009 to June 2010. The event mean concentrations (EMC) of dissolved copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and iron (Fe) exceeded China’s National Water Quality Standards for Surface Water. The degree of heavy metal contamination was related to the type of underlying surfaces. Additionally, the concentration of dissolved heavy metals peaked shortly after the runoff began and then declined sharply as a result of adequate flushing. First flush effects of varying degrees were also observed during all of the monitored rainfall events based on the first flush ratio ( ). Redundancy analysis revealed that four environmental variables (rainfall depth, intensity, antecedent dry weather period and type of underlying surface) had significant effects on the strengths of the first flush effects, accounting for 72.9% of the variation in the . Dissolved metals presented varying first flush effects on different underlying surfaces that occurred in the following relative order: parking lot>roof>road for low intensity and high runoff volume rainfall events; parking lot>road>roof for high intensity and low runoff volume events. The relative strength of the first flush for dissolved heavy metals was Fe, Mn>Cu, Zn>Pb.

关键词: urban stormwater     heavy metal pollution     temporal variation     event mean concentration     first flush effect     redundancy analysis    

Reuse of heavy metal-accumulating

Dongdong MA,Hongwen GAO

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 952-959 doi: 10.1007/s11783-013-0619-8

摘要: Phytoremediation technology is regarded as a simple and efficient way to remove heavy metals from contaminated soil. A reasonable disposal of metal hyperaccumulators is always a major issue in waste reuse and resource-saving. The heavy metal-accumulating (L.) was investigated where heavy metals were desorbed by a facile acid-treatment. The result indicated that more than 90% of heavy metals (Zn, Pb and Cu) was extracted from with 0.2 mmol·L HCl. The plant residue was used to adsorb heavy metals ions. The adsorption fitted the Langmuir isotherm model with the saturation adsorption capacity of 9.5 mg·g Zn , 36.2 mg·g Pb and 12.9 mg·g Cu , and the surface complexation and the backfilling of heavy metal-imprinting cavities existed simultaneously during the adsorption. The treatment of wastewaters indicated that the plant residue exhibited a high removal rate of 97% for Cu. Also, the material could be recycled. The method offers a new disposal approach for heavy metal hyperaccumulator.

关键词: heavy metals     Cynondon dactylon     acid-treatment     adsorption     recycling    

An overview of carbon nanotubes role in heavy metals removal from wastewater

Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 274-295 doi: 10.1007/s11705-018-1765-0

摘要: The scarcity of water, mainly in arid and semi-arid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.

关键词: carbon nanotubes     heavy metals removal     water treatment    

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

《工程(英文)》 doi: 10.1016/j.eng.2023.08.012

摘要: Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater (HMW) worldwide annually, posing a severe challenge to conventional wastewater treatment plants and harming the environment. HMW is traditionally treated via chemical precipitation using lime, caustic, or sulfide, but the effluents do not meet the increasingly stringent discharge standards. This issue has spurred an increase in research and the development of innovative treatment technologies, among which those using nanoparticles receive particular interest. Among such initiatives, treatment using nanoscale zero-valent iron (nZVI) is one of the best developed. While nZVI is already well known for its site-remediation use, this perspective highlights its application in HMW treatment with metal recovery. We demonstrate several advantages of nZVI in this wastewater application, including its multifunctionality in sequestrating a wide array of metal(loid)s (> 30 species); its capability to capture and enrich metal(loid)s at low concentrations (with a removal capacity reaching 500 mg·g–1 nZVI); and its operational convenience due to its unique hydrodynamics. All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry. We also present the first engineering practice of this application, which has treated millions of cubic meters of HMW and recovered tons of valuable metals (e.g., Cu and Au). It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.

关键词: Nanoscale zero-valent iron     Wastewater     Heavy metal     Resource recovery    

EFFECT OF EXOGENOUS ADDITIVES ON HEAVY METAL PASSIVATION AND NITROGEN RETENTION IN PIG MANURE COMPOSTING

《农业科学与工程前沿(英文)》 doi: 10.15302/J-FASE-2023487

摘要:

● Research on heavy metal passivation and nitrogen emissions is necessary for the pig industry.

关键词: additives     composting     heavy metals passivation     nitrogen retention     pig manure    

Re-evaluation of several heavy metals removal by natural limestones

Ali SDIRI,Samir BOUAZIZ

《化学科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 418-432 doi: 10.1007/s11705-014-1455-5

摘要: Different treatment technologies have been efficiently applied to remove heavy metals from wastewater. Efforts have been made to find out the most economic water treatment technology by using low cost and easily accessible natural materials. On the other hand, heavy metals are the most threatening groundwater contaminants because of their toxicity and harmful effects on human and biota. This review discusses the use of natural geological materials for heavy metal removal in aqueous systems. Special attention has been devoted to natural limestone through a systematic inventory of relevant published reports. The removal of toxic metals may include different mechanisms (e.g., physisorption, chemisorptions, precipitation, etc.), depending on the physico-chemical properties of the material and the removed metal. Sorption of toxic metals (e.g., Pb, Cu, Cd, Zn, Cr, Hg, etc.) onto natural limestone involved precipitation of metal carbonate as a predominant removal process, but often subordinated by adsorption and ion exchange, depending on the physico-chemical properties of the studied limestone.

关键词: limestone     heavy metals     sorption     wastewater     passive treatment technology    

Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1728-7

摘要:

● A higher sulfur content reduced the curing rate of Cr in glass.

关键词: Dechlorinated fly ash     SO3     Heavy metal     Chemical speciation     Glass solidification    

标题 作者 时间 类型 操作

Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal

Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen

期刊论文

Removal of copper by modified chitosan adsorptive membrane

Xiaoshuai LIU, Zihong CHENG, Wei MA

期刊论文

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal

期刊论文

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

期刊论文

Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils

Fang-Jie ZHAO

期刊论文

Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes

Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu

期刊论文

Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to

期刊论文

wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

期刊论文

Temporal variation of heavy metal pollution in urban stormwater runoff

Wen LI, Zhenyao SHEN, Tian TIAN, Ruimin LIU, Jiali QIU

期刊论文

Reuse of heavy metal-accumulating

Dongdong MA,Hongwen GAO

期刊论文

An overview of carbon nanotubes role in heavy metals removal from wastewater

Leila Ouni, Ali Ramazani, Saeid Taghavi Fardood

期刊论文

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

期刊论文

EFFECT OF EXOGENOUS ADDITIVES ON HEAVY METAL PASSIVATION AND NITROGEN RETENTION IN PIG MANURE COMPOSTING

期刊论文

Re-evaluation of several heavy metals removal by natural limestones

Ali SDIRI,Samir BOUAZIZ

期刊论文

Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass

期刊论文